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Abstract-A semi-infinite crack grows due to strl'SS wave diffraction in a weakly-couplcd thermo­
elastic solid. A rudimentary inelastic wne at the crack edge 'leis both as a heat IlU1t site and as a
crack-blunting nlL'Chanism. The transient an.i1ysis is first-step in the sense that const'lllt crack/7.one
extension speeds arc considered. and the material properties do not themselves vary with
h;mperature.

The 1/ "riori unknown heat Ilux in the 7.one. the temperature response at the zone l-dge. the
crack openin~ disphleement and the rate or energy produ<:ti<1I1 in the wile arc studied in the period
ri~ht after fr;ll'ture//one initiation.

These expressions show that the applied (incident wave) stress should excced the value nl'Cess;lry
for zonc forination prcdictcd by a non-thermal analysis, The zone edge tcmperature increases rapidly
at first. but tben hegins to Icvel olf in thc samc range of values noted fur steady-state analyses at
the time limit or the model's validity. The temperature rise varies inversely with 7.one growth rate.
while the crack opening and energy production rate vary directly,

I. INTRODUCTION

Analytical. numerical and experimental results (Weichert and Schoenert. 1974; Parvin.
1979; Zehnder and Rosakis. 1991) indicate that signitic.:ant temperature rises can occur
during fracture, Because 90% of plastic deformation energy goes into heat (Taylor and
Quinney, 1934) these tempaature rises arc associated with inelastic zone formation at the
crack edges.

Studies. such as those cited above, often treat steady-state crack growth. In contrast,
we arc interested here in rapid, nearly brittle fracture under dynamic loading during the
period right after initiation. A rudimentary elastic zone acts as a heat flux site on the
boundary of a weakly-coupled thermoelastic solid (weak coupling will be defined later).

The solid is unbounded, the crack is semi-infinite. and the dynamic loading is provided
by stress wave diffraction. As in studies such as those by Rice and Levy (1969) and Williams
(1972), the inelastic zone will have a Dugdale (1960) geometry, and will cause crack blunting.
However. the zone heat flux is not a priori fixed. and the fracture and heat energies are not
necessarily the same. A transient two-dimensional analysis is performed. and nearly exact
results obtained for short times after fracture/zone growth initiation. As a first step, a simple
heat flux model and constant. subcritical crack and zone extension rates are treated.

Symmetry will be invoked to reduce the analysis to a mixed boundary/initial value
problem in a half-plane. Therefore. in the next section. the general problem of a fully­
coupled thermoelastic half-plane is examined. and integral transforms for the weakly­
coupled case extracted. Boley and Tolins (1962) have. of course, considered the half-plane
problem. Here. however. the focus will be on transform expressions of particular use in
mixed problems.
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, TRANSIENT STUDY OF THER~10ELASTICHALF-PLANE

Consider the half-plane y > O. where (x. y) are Cartesian coordinates. For s < O. where
s = (time x dilatational wave speed. ['1)' the half-plane is at rest in a uniform temperature
field To CK). For s > O. we define (J as the change in temperature from To and u,(x. r. s) as
the change in the rest value of the i-displacement. where i = (x.y). That is. .

(u,. (J) = 0

for y > O. s ~ 0 while. by linear superposition. the governing equations

K ':<1 •
-V-(J-c,~fJ+fJTol",L1 = 0
II [. C

and

hold for y > O. s > O. Here (1, denotes identical indices. and

(I)

(2a)

(2b)

(3)

(4)

where {I has the dimensions of inverse temperature C· K . I). The symool V ~ is the Laplacian
operator. L1 is the dilatation. (.) denotes s-dilferentiation and ( )., denotes i-differentiation.
The material constants (flu. K./l. Vc• C,.) .Ire. respectively. the coetlicient of linear expansion.
the thermal conductivity. the shear modulus. the rotational wave speed. and the specific
heat at constant deformation. Equations (2) arc valid (Boley and Weiner, 1960) under the
assumption that lUI « ITul almost everywhere.

To solve (I) and (2), the unilateral and bilateral Laplace transforms

F= L"/(S)e-r'ds. F* = f, F(x)e'''''dx (Sa,b)

(Sneddon. 1972) are applied. where p here can be treated as real and positive but q is, in
general, complex. Under the reasonable assumptions that (u" 0) arc continuous across
elastic wavefronts. and vanish as J (;(2 +y2) -+ X for finite s. (2) and (I) reduce to the
symmetric coupled ODE set

[

DC _mcp1uJ

(m 1 - I )pqcJ

fJpq

(m 1
- I )pq2

/1/1 c1_pCh~

IIi; [
U:]U,* = 0

0*

(6)

where adenotes y-differentiation and

K
y=--,

Ill' I To

Cv
Yo ="'--T •Vi 0

(7)

Here Re (ao. ho) ~ 0 in the q-planes cut along 1m (q) = o. 1Re (q)1 > (1.11/). Solutions
bounded for y > 0 and valid for Izp > I arc
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(8a)

(8b)

(8c)

where (A, B, C) are arbitrary functions of (p, 'I) and, for the case hp < 1, the subscripts ±
are interchanged. In either case.

_ m~p6 , _ fJq Q+
..1-- , .\+-
'f3q(hp-l) 6p m'-M±

(
I )' , I,Q + = 6 + -, - I K +. K + = - Al -.. - I.- m' - - r -

y _ L 6q2+(a~-ai/m2)K±

± -6pa! m 2 -Mi
(9a)

(9b)

I
r = -- M; = HI +(1 +6)r]±JWI-(1 +6)rjZ+6r)

Izp'

where Re (a ±) ~ 0 in the q-planes cut along 1m (q) = 0, IRe ('1)1 > M ± and

;' I (11):II=Y;j' 1:=; m.

(9c)

(IOa.b)

Here II is the thermoelastic characteristic length. and the dimensionless parameter r. is the
coupling constant (Chadwick. 1960; Achenhach. 1(73). For many thermoelastic materials
/; ::;; O( to :), and it is noted that here it often occurs-such as in the key parameter M t­

in sums or dil1crences with dimensionless numhers of O( I). We here, therefore, define a
weakly-coupled thermoelastic solid as one for which /: in such circumstances is viewed as a
perturhation and can be neglected. By starting with M.t, it can then be shown that so long
as

Izp+ I
Si: < O( I ), S = (Izp _ I) i

an excellent approximation to (8) for both (Izp > I, Izp < I) is

U: = Be -pboY +A e -P"oY + ,{3qlz C e -P'oY

rw(hp-I)

e. = Ce ''',,1

where (A. B, C) arc as before, while

(II)

(12a)

( 12b)

( 12c)

( 13)

and Re (:Xo) ~ 0 in the plane cut along 1m ('I) = 0, IRe ('1)1 > .Jr.
The results (12) are identical in form to those that would be obtained if (6) were solved

after dropping the {I·terms in the bottom row of the matrix. That is, the {I.term in the
temperature diffusion equation (2b) can be ignored. Thus. the temperature field in a weakly·
coupled thermoelastic solid affects the kinematical field equations, but not vice-versa. Such
hehavior is analogous to that for a solid in e1astostatics (Boley and Weiner, 1960). The ao·
terms in (12) suggest that the weakly-coupled solid propagates standard (Achenbach, 1973)
dilatational waves.
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Fig_ 1_ Transform variabk ~xpansion param~kr.

A plot of S vs hI' ?: 0 in Fig. I shows that for I: - O( 10 - ~). (II) is satisfied except in a
range roughly defined by 0.75 < hI' < 1.25. Thus. (12) is an adequate double transform
representation for very small and very large values of hI'. From the Abelian theorems of
Laplace transforms (Noble. 1958; Sneddon. 1972) it follows that the functions themselves
should be very accurate for short and long times. The former situation is. as noted at the
outset. of interest to us here.

With the mathematics of thc weakly-coupbl solid established. thc crack prohlem can
he attacked. However. it will he more convenient to work with the coordinates (~ . .r..\').
where

~ = .\' - c.\'. 1/; = 1/, ( 14a.h)

and c is a constan t speed non-dimensionali/ed with respect to l'1- For the weak Iy-coupled
solid. (2) is in view of (7) and ( lOa) replaced by

(",~ - I )/l" + V~I/, + IW i -",~(ii,- 2ni,.; +C~II,.;J = o. i = (~.I') (15a)

IIV"{)+cO;-I) =0 (15b)

where (li. V~) arc now defined in terms of (~.y). As seen in (15). the transformation
(14a) preserves three independent variables (~.y. .1'). Similar transformations (Sneddon and
Lowengrub. 1969) lead to steady-state equations in the two variables (~ . .1') by suppressing

s-derivatives.
Double transforms arc now with respect to (~.s). and (5b) is replaced by

In view of (I). the application of(5a) and (16) to (15) gives

U: = B e ph• + A e -p". + __,_._F~'- ...._, eel""
IIrp(cr - :r)

0* = Ce PH

where now

( Hi)

( 17a)

( 17b)

( 17c)
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and Re (a. b.:x) ~ 0 in planes with the branch cuts

a: Im(q)=O. L>Re(q).Re(q»i+; i±=±l/(I±c) (19a)

b: 1m (q) = O. m_ > Re (q). Re (q) > m+; m± = ±m/(I ±mc) (l9b)

Clearly. (12) is recovered when c = O. The sequel will call for the double transforms of the
tractions (u.,.u v)' These expressions can be obtained from (3) with x replaced by~. (16).. .

and (17) as

where

I N 2Bqcc
~. = - -Be-ph" __" aA e-pa,'_ " ,Ce-P"-

it"'~" Ph P m-(cr-oc-)

I ~. .., B -phv N f -P<ll' 11N C -p'n- "'v = - .t.Pif e +P- /t e '+ -,.-,----..- e
JI if ,,,-(cr -oc-)

(20a)

(20b)

(21 )

The crack problem is st.lted in the next section. It will be seen that. despite the weak field
equation coupling. determination of 0 does depend on u, because of inelastic zone-imposed
boundary conditions.

), THE CRACK PROBLEM

Consider the semi-infinite crack y = 0, x < 0 in an unbounded, weakly-coupled solid.
For s < O. equilibrium exists for a uniform temperature field To. That is. the undisturbed
crack is essentially closed. so that a uniform temperature field is possible. A plane dila­
tational wave defined by

( •• y

u, = O. JU,,2 uv = - Jo U(/) dl, s~y (22)

is. however, traveling through the material at right angles to the crack plane. Here U is the
traction u." generated a distance I behind the wavefront. When (2b) with the p-term dropped
or (lSb) hold. it is easily shown that (22) is associated with the constant O. which we will
take to be zero. At s = O. the wave reaches the crack, and is diffracted at its edge.

We assume that almost instantaneously the· crack extends along the positive x-axis,
and that a vanishingly thin elastic zone forms simultaneously ahead of it. The geometry of
the diffraction/fracture process and the accompanying wave pattern are shown schemati-
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Fig. 2. Crack propagation process and associated wave pattern.

cally in Fig. 2. There (c. co) are the constant. subcritical speeds of the inelastic zone and
crack edge. non-dimensionalized with respect to l't. where

and CR is the non-dimensionalized Rayleigh wave speed.
Although the inelastic zone is close to vanishing. it hehaves as a perfectly plastic

material (Dugdak. 1960). Therefore. since the plane wave (22) induces no shear fT" in the
plane of the zone. we should have

yO'. cos < x < cs: rT" = O. fT, = r (~.f )

where r is the yield stress, If indeed a signilicant temperature rise occurs. then r should
vary inversely with 0 (Boyer and Gall. IlJX5). For mathematical simplicity in this first-step
analysis. we keep r constant. Becausc the inelastic zone acts as a heat nux site. we expect
that

y=O±. cos<x<cs: iJO= ±"'"(X-C"S) (25)

where "'" is the flux function. and must be determined. As a first step, dependence only on
the distance from the crack edge has been assumed.

The solution for this problem can be viewed as the sum of the plane wave lield (22)

(with () = 0) and the To-induced static field with the (u
"

0) resulting from the removal of
the (22)-induced tractions from the surfaces of an identical crack growing in an initially
undisturbed solid. Since the former two fields are, in etlcct, known, attention focuses on
the traction removal problem: this problem exhibits crack plane symmetry, so that only
the half-plane y > 0 need be considered by imposing, in view of (22), (24) and (~5), the
conditions

an = 0, a,. = Yl/(x-cos)-a(s)(x < cS), u, = 0(.\ ~ cs)

to = '"o(x - cos)(ells < x < cS), DO = O(x ~ cs, x :( CIIS)

along y = O. where H( ) is the Heaviside function. For y > O. S :( O.

(U,.O)=O

(26a)

(26b)

(27)

while for (I'. s) > O. (2) and (3) hold. with the fJ-term in (2b) suppressed. In addition.
wavefront ~ontinuityand boundedness as J(X Z+yZ) -+ XJ for finite S for (u i • ()) is expected.

To study this problem. we employ the Wiener-Hopf (Noble. 1958) technique. There­
fore. (14) is introduced. and (15) becomes the field equation for (,I'.s) > O. Conditions
(26a.b) take the form
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cO = t/J(s+k;)H(s+k~). uy = u_ (~,s)H(-~)

(j, = YH(s+k~)-(j(s)H( -~)+a+(~.s)H(s-v~)H(;). a~r = 0

where v is a vanishingly small, dimensionless positive constant, and

I
k=-:-. 6c=c-co. t/Jo(s)=t/J(ks), u_(O-,s)=O.

OC
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(28a.b)

(28c.d)

(29a-d)

Here (a +./L) are. respectively, the unknown traction a" in the crack plane ahead (~ > 0)
of the inelastic zone. and the unknown til induced for y = 0, ~ < 0 by the crack opening
and inelastic zone displacement discontinuity. Their introduction allows conditions on all
four quantities (a~I' a l . cO. tI,) to be stated everywhere on y = O. The restriction (29d)
recognizes that the inelastic zone displacement discontinuity vanishes at the zone edge. The
argument of the Heaviside function with a + recognizes that part of this traction radiates
from the inelastic zone edge as elastic waves (Achenbach. 1973) while part is. due to the
parabolic nature of (15b). established everywhere instantaneously, but decays exponentially
for finite s as I~I -+ x (Carrier and Pearson. 1988). That is, a + can be viewed as essentially
zero at some time-dependent finite distance away from the crack edge. It will be seen that
v actually does not appear in the solution.

Application of (Sa) and (16) to (28) yields the double transform conditions

VI* = V*. rr" = 0

along y = O. The right-hand side of (30a) and the first term in (30e) are analytic for
Re (If) < k. while the right-hand side of (30b) and the second ternl in (30c) are analytic for
Re (If) < O. The last term in (30c) is analytic for Re (If) > - I'. Double transforms that
satisfy wavefront continuity. boundedness. (28) and the field equations (15) for y > 0 have
already been obtained. Therefore our problem can be solved merely by identifying the
parameter c in those results. (17) and (20). with the dimensional zone speed C here. and
then enforcing (30). I I' for the moment lJ1 is treated as given, then (17) and (20) contain
three arbitrary parameters (A. B. C), while the four conditions imposed by (30) involve the
two unknowns (V~, r~). Equations (30) can be used. therefore, to eliminate (A, B, C) and
reduce the analysis to the single Wiener-Hopf equation

for (U*. r~). Here

is a form of the Rayleigh function. with zeroes at 'I = nt, where

Il, = ±n/(I ±Ilc). n = l/cl{'

(32)

(33)

4. SOLUTION OF WIENER·HOPF EQUATION

The regions of analyticity noted earlier show that various terms in (31) are analytic in
certain areas of the 'I-plane. This suggests that (31) be rewritten in such a way that the two
sides of the equation are analytic in overlapping half-planes. As a first step toward achieving
this end. we note (Freund. 1971) that R can be written as
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(34)

(35b)

(35c)

The first pair of q-dependent terms on the right-hand side of (34) is analytic for Re ('1) > fI

while the last pair is analytic for Re (q) < t1 •. Similarly,

a = a .. (l _ , at = J(I - eq ±q) (36)

where the factors a 1: are analytic in, respectively. the half-planes Re (q) > i and Re (q) < i ...
In view of (34) and (36), (31) becomes

G 11I
1
(1. [:r Y ] 1I\fI),p (q-f/ )U'" + .... - -- + ..... - ..... P (37)

(l j-.. JlpG .. (q-n ) q p(k-q) p2

where

(38)

The left-hand side of (37) and the first term on the right-hand side are analytic for.
respectively, Re(q) > v, Re(q) < O. The remaining terms can also be expressed as the
sums of functions with overlapping half-planes of analyticity, either by inspection or by
adopting a formal decomposition procedure (Noble, 1958). The result is

Here, the q-dependence of (a " ,G +) is understood unless specified otherwise, and the form
of P+ depends on where the branch points r 1: are in relation to the other branch points
and singularities of P. For the case Itp » I which is of interest here, we have i _ < r < 0,
o< r + < k and, therefore
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I, Ps(W) dw 1'" P1(w) dw rrPin)
rrP = + + .

+ f+ w+q(l-cw) I w+q(l-cw) n+q(l-nc)

In (40)

(I) bc(l-nc)J(I- w)J(I-cw)3
P (w) - F - N ---=---~--:.--~~---'---:"

J - + c O(I-cow)L(n-w)I:t![r(l-cw)-11

4A.Jc w2(w+n)F+ I [J(W-l) I ]
P(w)---Nlalb -- +---

I - I-nc ° 0 °(I-Cow)D[r(l-cw)-I] F+ G) I!XI J(w+ I)

(I) J(l-nc)s 1 [J(n-l) I ]
P,,(n)=No(n)JcF_ C (l-con)[r(l-nc)-I]-F_-(n-) 1!X(-n)I--J(-n-+-l)

where

<jlll

HOl

(41a)

(4Ib)

(4tc)

(42a,b)

and the w-dependence is understood unless specified otherwise. In writing (41), the effects of
the speed parameters (c, cu) were made more explicit by using (29a), appropriate integration
variable changes and, from (35b) and (42b), the relation

(43)

The (:Et, '{I)-terms on the left-hand side of (39) are analytic in, respectively, the regions
Re(q) > (-y. t_). while the (:E. Y)-terms are analytic for Re(q) > L On the right-hand
side. the (U.!. :E)-terms are analytic for Re (q) < 0 while the (Y. 'I')-terms are analytic for,
respectively, Re (q) < (k, r +). That is. the left- and right-hand sides of (39) are analytic in
the overlapping half-planes Re (q) > - y and Re (q) < O. They can then be viewed as
the analytic continuations of the same entire function. The Abelian theorems and (30b)
demonstrate that for y = 0, e=0-

U "'" lim pqU!
y Iql-»

(44)

but (29d) implies that the left-hand side of(44) is zero. Therefore. U! must behave as O(q - I)
when Iql ~ 00. A check of each term then shows that the right-hand side of (39) vanishes
when Iql ~ 00. Thus, the entire function is bounded for all q, and Liouville's theorem states
that such functions must be constant. Both sides of (39) are zero, therefore, and can be
solved separately for (:Et, U!).

5. CRACK PLANE STRESS AND AN EQUATION FOR '"

With (:Et, U!) available, the transformed crack problem is now in essence solved for
Izp » I. A solution to the problem itself valid for small s can be obtained by inversion of
these transforms. Of particular interest is the crack plane traction (f + very near the inelastic
zone edge (e - 0+). For this case. the Abelian theorems imply that knowledge of:Et for
large Iql is sufficient. From (35)-(41) it can be shown that
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for large q. where

[
I dll' r'" dlr ITITPo =: P.(w)-,--+ P 1(w)--+Pn(n)--.

.'. - ('w • I I - cw I - nc

The inversion operations for the transforms (16) and (Sa) are

F(~) =:..,1'. r F* eN: dq. lis) =..,L i Fe!" dp
_ITt Jr _ITt r, "

(45)

(46)

(47a.b)

(Sneddon. 1972). Here r q is a continuous path from lm(q) = - x to Im(q) =: oc that lies
to the right of singularities and non-analytic behavior of F. while the contour r!' can here
be taken along the left-hand side of the 1m (q)-axis. Substitution of (47a) and deformation
of the r,,-contour by usc of the Cauchy theorem to a path around the branch cut 1m (q).

Re (q) < 0 of r~ gives an integral that can be performed with standard tables (Peirce and
Foster. 1957). The result is

I [J1fl\jIr, ~ , 1'" + F
JI'J(I-c) ,wI' (I) (I-nc)r (I). -I-" (I-c,,)

c fir I (0) c J

(l-flc)YJ()c ] I
(4X)

( I) J(ITs)
F . (I -C"fI)1'

c "

for s - 0 +. We have again made (c. e,,) more explicit through the use of (29a) and (43).
Because the field (22) 'Illd that induced by To arc well-behaved everywhere. (48) indicates
that the inelastic zone edge stress is singular. Indeed. the I/Js-coefficient in (48) is the
transform of the dynamic stress intensity factor. For crack blunting to occur (Dugdale.
1960). this factor must vanish, so that (48) gives the result

valid for hI' » 1. where

(49)

(!)=:F
n-/c)c

(O)J(I-c,,) (I)'
(I - c"fI)F

Co

(50)

Indeed. because we are interested in inelastic zone response right after fracture initiation.
a 'P valid for hI' - x sulliees. To extract this expression is tedious. due to the factor Po.

Nevertheless. it can be shown that

(51 )

By using (47b) and the convolution theorem. the inverse of (51) is obtained as
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p.f3Jc w Y (. . [aCt) ]
2it1/l(s)"" - TL(s)+ Jo L(s-t) h -ti(l) dt

where 1/10 in (25) follows by replacing s with (x-coS)/Jc. and

i
~dU e-U(

Ll)= - "
( 0 U (In hu)- +rr-

9M3

(52)

(53)

can be written in terms of tabulated functions (Gradshteyn and Ryzhik, 1980). Equations
(25). (29c), (50) and (52) show that the heat flux generated in the inelastic zone right after
fracture initiation varies inversely with zone growth rate Je. and appropriately vanishes at
the crack edge.

With (52), the crack problem for small s is essentially solved to within determination
of the dimensionless speeds (c, co). That requires a thermodynamically-based fracture
criterion, but we can still study the temperature field 0 for small s by treating (c, co) as
given.

6. DETERMINATION OF 0

Returning to the process that led to (31), it can be shown that

-lfl0* =----,---~----e -Pl\"

[J"(y.(k - q)

Application of (47'1) to (54) gives

e = - 'I-' ( e/I"~ 11') dq
2rrip Jr. rx(k - q)

(54)

(55)

where.:, for large enough p, the singularity k lies on the.: integrand branch cut 1m (q) = 0,
Re (q) > r •. Although the radical IX is itself a function ofp, it is advantageous to mimic the
Cagniard-·de Hoop (1960) method in developing (55). Thus, a contour in the q-plane is
sought along which the exponential assumes the form e -PI, where t is real and positive.
Such a contour is defined as

(56)

where

(57a)

(57b)

For large enough p, t ± are both real, with t + > O. Then, (56) describes a Cagniard contour:
two branches ofa hyperbola which crosses the Re (q)-axis between the branch points q = r ±

of ;.c. The Cauchy theorem can be used to change the path r q onto this contour, and for the
case ~ > 0 (0 < ¢ < tr/2) we have

(58)

The integration variable change 21 = (t + - t _ )u+ t + + t _ then yields
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(59)

The exponentials show clearly the expected decay of (J (and. thus. 0) as r increases. Of
interest. therefore, is the behavior of (J at r = O. the inelastic zone edge itself. Setting r 0
in (56). (57) and (59) gives

(60)

where the subscript denotes evaluation at r = 0 and

(61 )

The integrations in (60) can be performed with standard tables, so that for Ill' "'"' oc we have

-\f (2k)
en -nkp In J~ .

Substitution of (51) and application of (47b) gives, finally,

In(2k)C' [I (J) J
0" - 2 pI! Jo L(s- I) h a(t)-d'(t)- II Y til.

For a step-stress incident wave

a(s) = ao(O < ao « Y)

(29a,b), (53) and (63) combine to give

(62)

(63)

(64)

(65)

As indicated by (4) and (53). /J is negative while the integral is positive. Therefore. a
temperature increase at the inelastic zone edge right after fracture initiation will not occur
unless

(66)

Indeed. a strict equality. i.e. 00 vanishes. gives the same result as that required for frac­
ture, zone growth without thermal effects. ci Nuismer and Achenbach (1972).

For the present situation. insight into the an required for a given process can be
obtained from w. As (SO) indicates. w depends not on crack and zone speed (co, c). but on
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Fig. 3. w vs non-dimensionalized crack speed.

crack speed and zone growth rate (co. <5c). Figure 3 shows that w generally increases with
both. That is. for a given ratio 0'0/ Y. satisfaction of (66) requires that the faster the crack
moves. the lower the zone growth rate must be. Consequently. (65) shows that, for a given
crack speed. 00 varies inversely with zone growth rate. This effect confirms the Zehnder­
Rosakis (1991) observation that concentrating the heat source mechanisms (the zone here)
serves to increase the local temperature.

For further illustration. we consider a generic steel material with properties

I m
/J= -8.2(10. 5

)-. VI =5900 -. m= 1.84.
0t.: S

Y
- = 0.001. h = 0.00167 Jtm
It

(67)

and cracks with rudimentary zones (5c « c. In addition. precisely because the zone is small.
we assume that the non-thermal O'o! Y-rclation is essentially correct, and consider

(68)

in order to satisfy (66). That is. the applied stress 0'0 must exceed the non-thermal critical
value by an amount Ja which is O( 10 3

) psi. Plots of 00 in Fig. 4 for (67). (68) and various
values of Jc « c show an extremely rapid rise followed by a leveling-off at values after I ns
that arc of the order of magnitude noted by Zehnder and Rosakis (1991). Particular
combinations of (a o. co) values for the <5c-eases shown can be determined from (68) and
Fig. 3. Equation (65) is. of course, valid only for a short time after fracture/zone initiation;
the time range covered in Fig. 4 is chosen only to clearly illustrate the leveling-off of the
Oo-increase. For example. a value of Co = 0.2 in the material here would produce a crack
extension of 1.18 mm by I JlS after difraction. Finally, (65) and both Figs 3 and 4 indicate
that the zero-speed (co = 0) limit case of pre-fracture inelastic zone growth shows little
distinctive behavior.

1000 r---r--r--,.---,r---r-...,

800
8cr=0.00011t
m"1.84

400

200

Fig. 4. Temperature rise vs time after diffraction.
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Condition (66) is not itself a fracture criterion. although it could be incorporated in
one. For insight into the fracture mechanics of the process considered here. we now study
parameters that are often used in fracture criteria.

7. FRACTURE CRITERIO:-'; PARAMETERS

[n the criteria for Dugdale (1960) models. two parameters that are often used are the
crack opening d, at the crack edge (here. the tail of the inelastic zone) and the rate ofenergy
production in the inelastic zone (Achenbach and Brock. 1971) per unit length ofcrack edge.
~V Returning now to the solution (39). we have in view of (34) and (40).

Examination of (69) shows that the I;·term is analytic for Re (q) < O. has a pole q = 0 and
a branch cut 1m (q) = O. Re (q) > i ... The Y·term is similar. except that its singularity, at
q = k. lies on the branch cut. The first (a/:d 'f'-term has for large p bmnch cuts 1m (q) = O.
m < Re(q) < T_ and Im(q)::::: 0, T+ < Re(q) < m~ and poles at 'I = (f/±.k,(l-r)/c).

The second 'f'·term has the same poles for large p, but its branch cuts are 1m (q) = 0,
m. < Re (I() < i_and [m (I() = 0, i ~ < Re ('I) < m .. The final term in (69) has a pole at
I( = tI • and the branch cuts 1m (q) = O. m < Re (q) < rand [01 (q) = 0, Re (q) > i, .
Thus, the substitution of (69) into (47a) for ~ < 0 and the usc of the Cauchy residue theory
gives an expression for U. in terms of integration around the right·hand branch cuts of
the various integrands, and residw:s from those poles in the region Re (q) ~ O. Substitution
of (51) into U and allowing hI' - Y", gives a transform suitable for the period right after
fral.:ture. Then. by using (29a,b), (43) and the same type of integration variable changes
used to produce (4\ ). we have

where

(i" f' )(lI'+lI)J(I+CII')... .,., H~'~" I .. ('110-'rePj,(c;) = N,i+ 411'-ltJ llhlJ l _· __ ··__·--·_·F.. e'" dlv
• I '" 1I'(I+c lJ lI')D

(70)

(71 )

and If·dependence is understood. Equation (70) can be inverted by using tabulated results
(Carrier and Pearson. 1988). In particular, we have

(72)

for -s < k¢ < 0 (cos < x < cs). The region of x considered corresponds to the inelastic
zone itself. By symmetry, then,

de = 2!L( -s,k.s). (73)

This region of x also has the advantage that the \\··integration of the inverse of the P12'

term can be performed by the Cauchy residue theory, cf (70). In any case. (72) demonstrates
that {Ie does not depend on the thermoelastic parameter [1. and vanishes both when s = 0
and. in accordance with (30d). when ~ = o.
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Turning now to the energy rate, it can be shown (Achenbach and Brock, (971) that

I
,·,

~V = 2t'l YzL dx.
CoJ

Use of (14a), (7:!) and performing the x-integration in (74) gives

~~~ ~t· - :!e5e[l1(s) - (J) Y erf (X)]s +ef: [11(S - t) - (J) Y] erf ( XJG)) dt

(74)

where

(76)

Like dc. ~V does not depend on {J, and vanishes at s = O.
For insight into the sensitivity of the relation between the inelastic zone/crack speeds

and these fracture mechanics parameters, we once again consider the case (64). Then. (73)
and (75) give

(77a)

(77b)

Equations (77) both exhibit the factor seen in 00, Indeed, (66) must again hold for dc ~ 0,
and its satisfaction would certainly maximize W. Another effect of the weak coupling
considered here is that (cf.., W) are not, as they would be in a non-thermal study. cf Nuismer
anll Achenbach (1972), strictly linear in time (s). Another feature of (77b) is that Wdepends
explicitly on zone speed (c), not just zone growth rate (Je).

In Figs 5 and 6. the dimensionless quantities (dclh, WIIlV\h) are plotted vs real time for
(67), (68) and some allowable combinations of (co. e5c). In view of the size ofh. Fig. 5 shows
that that the inelastic zone trailing edge (crack edge) separation is micromechanical in scale
for some time after the supposed fracture. This is perhaps consistent with the Dugdale

0.05 r---.----..---.--....-....--.....----.

0.04

de
Ii

0.02

O.QI

0.0 0.2 0.4 0.& 0.8 1.0 1.2

time (n5)

Fig. 5. Crack opening vs time after diffraction.

Si\S 29:8-E
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m=1.84
8CT=0.000IfL

0.0 0.2 0.4 0.6 0.8 1.0 1.2

time(ns)

Fig. 6. Inelastic zone energy rate productil)n vs time after dilfraction.

model and small lOne growth rates considered here. Even with (68) imposed, W shows
noticeable variation with Cn• so several curw sets are presented in Fig. 6. It is noted that,
as opposed to On. both «((, ~~') vary directly with lOne growth rate <5c.

In closing this section. it should be noted that dropping (68) and systematically varying
(c, cn) for the case a n/ Y ~ 0.1 indicated that (ti" Ii') generally had the same sign. That
is. crack opening appropriately requires energy production. at least right after fracture
initiation.

X. D(SClJSSIO:\

This study considered thermal clrects associated with rapid, nearly brittle crack propa­
gation under stress wave difTraction. The cracked material was a weakly-coupled thermo­
elastic solid. and the crack edge exhibited a rudimentary inelastic zone of the Dugdale
type. that also served as a heat flux site. A transient two-dimensional analysis valid for the
period immediately after fracture/zone initiation gave expressions for the zone heat flux.
zone edgc temperature change, crack opening and the rate of energy production in the zone.

Beyond the inelastic crack-blunting effect. no particular fracture criterion was imposed,
but insight was gained by studying the expressions themselves: for the diffraction of an
incident step-stress wave. it was found that the incident wave stress level. the yield stress,
crack speed and zone growth rate must satisfy a certain inequality. Because the integral
transform of the temperature field in the solid showed the typical exponential decay with
distance from the source (the zone). the temperature at the zone edge itself was examined.
It was found to inere.lse rapidly, then level oIl' with time, and to vary inversely with zone
growth rate. Qualitative agreement with more detailed steady-state results was also noted.
The crack opening and energy rate increased continuously with time. and varied directly
with zone growth rate.

Because we were interested in nearly brittle fracture, zone growth rates were kept small
in computations. in keeping with the vanishing thickness of the zone. Moreover, incident
wave stresses that barely satisfied the aforementioned inequality were employed in com­
putations-a strict equality being the non-thermal limit case. The aforementioned tem­
perature behavior was, therefore, gratifying, since Parvin (1979) has shown that zone
thickness should generally not be ignored in temperature calculations, while Zehnder and
Rosakis (199\) have surmised that a Dugdah.: zone artificially concentrates heat source
mechanisms.

The limitations of the model employed here went beyond zone geometry: in particular.
the crack and inelastic zone were assumed to grow simultaneously at constant speeds.
immediately upon stress wave diffraction or. in the limit case of no fracture, zone initiation
was instantaneous. The yield stress temperature variation, as well as that of other materi.tl
constants. was neglected. The inelastic zone heat flux function, while not a priori given, was
assumed. as a first step. to vary only with distance from the crack edge.

The other basic limitation. that of a weakly-coupled thermoelastic solid, was perhaps
less restrictive: the dimensionless thermoelastic coupling constant. known to be «I for
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many materials. was simply treated as a negligible perturbation in sums with dimensionless
numbers of O( I). The resulting field equations were generally valid for long and short times
after fracture/zone initiation. Indeed. the equations were analogous to fully-coupled static
thamoelasticity.

The crack-blunting requirement gave a relation between the flux function transform
and transform functions related to the yield stress and incident wave stress. An alternative
possibility. for brittle fracture. would be to require that the intensity factor achieve a fracture
criterion-specified behavior. This would again allow a flux function relation. In either case.
this function clearly serves as a useful characterization of both thermal and mechanical
response in the crack edge region. especially when an idealized model is used to represent
what can be complicated local thermo-mechanical behavior.

In performing the study. integral double transforms and the Wiener-Hopf technique
were employed. In general. exact expressions for the various field variable transforms were
possible. despite the presence of a characteristic length that caused the regions ofanalyticity
in the spatial transform plane to vary with the time transform variable. Only upon inversion
were approximations used and these were valid for the short time ranges considered.

In summary. then. this study did rely on certain idealizations that are not used in other
work cited here. Nor did it provide a complete. thermodynamically-based. fracture mech­
anics model. As the work of Zehnder and Rosakis (1991) shows. numerical schemes capable
of handling more realistic inelastic zone geometries arc probably ultimately necessary.
However. this study did. as a first step. provide transient results for dynamic loading and
rudimentary inelastic lones. and did allow thermal effects in the elastic material surrounding
the /llne/l:rack. It serves. thercrore. as a basis for further work. and as a limit-casc check
on morc ambitious transient studies.

.·/ck1/"I\1ccl"'·/Itc'flt., ~This work was partially supported hy NSF Grant MSM K9 117944 to LM B. and the hasic
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